模型服务CPU使用率持续飙升的监控告警策略
问题背景
在生产环境中,ML模型服务出现CPU使用率持续飙升现象,需要建立有效的监控告警机制。
核心监控指标配置
# Prometheus监控配置
- job_name: 'ml-model-service'
metrics_path: '/metrics'
static_configs:
- targets: ['localhost:8080']
metrics_relabel_configs:
# CPU相关指标
- source_labels: [__name__]
regex: 'model_cpu_usage_percent'
target_label: metric_type
replacement: cpu_usage
- source_labels: [__name__]
regex: 'model_cpu_core_usage'
target_label: metric_type
replacement: cpu_cores
告警规则配置
# Alertmanager配置
groups:
- name: model-cpu-alerts
rules:
- alert: ModelCPUSpike
expr: rate(model_cpu_usage_percent[5m]) > 80
for: 3m
labels:
severity: critical
service: ml-model
annotations:
summary: "模型服务CPU使用率超过80%"
description: "当前CPU使用率 {{ $value }}%,持续3分钟以上"
- alert: ModelCPUSpikeHigh
expr: rate(model_cpu_usage_percent[1m]) > 95
for: 1m
labels:
severity: emergency
service: ml-model
annotations:
summary: "模型服务CPU使用率急剧上升"
description: "当前CPU使用率 {{ $value }}%,需要立即排查"
复现步骤
- 启动Prometheus和Alertmanager服务
- 配置模型服务暴露指标端点
- 执行以下命令模拟CPU飙升:
# 模拟高负载
while true; do
yes > /dev/null &
done
- 观察告警触发:
curl -X GET http://localhost:9093/api/v1/alerts

讨论