模型预测准确性持续下降的监控告警系统
核心监控指标配置
在模型运行时监控中,准确性下降是关键风险指标。建议监控以下具体指标:
1. 准确性基线对比
model_accuracy:当前预测准确率baseline_accuracy:历史基准准确率accuracy_drift:准确率变化率(公式:(current - baseline) / baseline * 100%)
2. 性能指标监控
# Prometheus监控配置示例
- name: accuracy_drop_alert
expr: (model_accuracy - baseline_accuracy) / baseline_accuracy * 100 > 5
for: 10m
labels:
severity: warning
alert_type: accuracy_drift
告警配置方案
告警阈值设置:
- 预警阈值:准确率下降超过3%
- 紧急阈值:准确率下降超过5%
告警策略实现:
# 告警触发逻辑
import pandas as pd
class AccuracyDriftDetector:
def __init__(self, baseline_threshold=0.03):
self.baseline_threshold = baseline_threshold
def detect_drift(self, current_accuracy, baseline_accuracy):
drift_rate = (current_accuracy - baseline_accuracy) / baseline_accuracy
if drift_rate < -self.baseline_threshold:
return True, f"Accuracy dropped by {drift_rate:.2%}"
return False, "Normal"
告警通知机制: 当检测到准确率持续下降超过10分钟时,自动触发Slack通知并记录到ELK日志系统中。

讨论