机器学习模型推理延迟波动的异常检测系统
在生产环境中,ML模型推理延迟的异常波动直接影响用户体验和业务指标。本文构建一个基于统计分析的延迟异常检测系统。
核心监控指标
- 推理延迟(p95, p99)
- 延迟标准差
- 延迟均值变化率
- 请求成功率
实现方案
使用Python实现基于滑动窗口的统计检测:
import numpy as np
from collections import deque
import time
class LatencyDetector:
def __init__(self, window_size=100, threshold=3.0):
self.window = deque(maxlen=window_size)
self.threshold = threshold # Z-score阈值
def add_latency(self, latency):
self.window.append(latency)
def is_anomaly(self):
if len(self.window) < 20: # 最小样本数
return False
data = np.array(list(self.window))
mean = np.mean(data)
std = np.std(data)
# 计算Z-score
z_scores = np.abs((data - mean) / std)
# 检测异常点
anomalies = z_scores > self.threshold
return np.any(anomalies) if len(anomalies) > 0 else False
# 告警配置
latency_detector = LatencyDetector(window_size=100, threshold=2.5)
告警策略
- 延迟p99超过300ms且持续5分钟
- 延迟标准差同比增加200%
- 连续3次Z-score > 3.0
集成方案
将检测逻辑集成到Prometheus监控系统,配置告警规则:
# alert.rules.yml
groups:
- name: ml_model_alerts
rules:
- alert: HighInferenceLatency
expr: (
rate(ml_inference_duration_seconds_sum[5m]) /
rate(ml_inference_duration_seconds_count[5m])
) > 0.3
for: 5m
labels:
severity: critical
annotations:
summary: "模型推理延迟过高"
复现步骤
- 部署检测器实例
- 定期调用add_latency()记录延迟数据
- 每分钟检查一次is_anomaly()
- 集成Prometheus告警规则
- 配置Slack/PagerDuty通知

讨论