基于Flink的模型实时预测监控平台
核心监控指标配置
1. 预测延迟监控
metrics:
latency:
threshold: 500ms
percentiles: [0.5, 0.9, 0.99]
throughput:
min_rate: 1000 req/s
2. 模型准确性指标
# Flink作业中添加自定义指标
latency_metric = metrics.gauge("prediction_latency", lambda: get_current_latency())
accuracy_metric = metrics.gauge("model_accuracy", lambda: calculate_accuracy())
告警配置方案
Flink告警规则:
- 预测延迟超过500ms持续30秒触发告警
- 每分钟预测准确率低于85%时告警
- 系统CPU使用率超过90%时触发
实施步骤
- 在Flink作业中集成Micrometer监控
- 配置Prometheus抓取指标
- 设置Grafana仪表盘展示关键指标
- 通过Alertmanager配置告警规则
# alert.rules.yml
- alert: HighPredictionLatency
expr: prediction_latency > 500
for: 30s
labels:
severity: page
annotations:
summary: "预测延迟过高"
关键代码示例
public class ModelMonitoringFunction implements RichMapFunction<InferenceRequest, InferenceResponse> {
private transient Counter requestCounter;
private transient Histogram latencyHistogram;
@Override
public void open(Configuration parameters) {
requestCounter = getRuntimeContext()
.getMetricGroup().counter("request_count");
latencyHistogram = getRuntimeContext()
.getMetricGroup().histogram("latency", new DescriptiveStatisticsHistogram(1000));
}
}

讨论