基于Redis的模型缓存命中率监控系统
核心监控指标
- 缓存命中率:
hits / (hits + misses) - 缓存未命中率:
misses / (hits + misses) - 缓存命中次数:
redis.info().keyspace_hits - 缓存未命中次数:
redis.info().keyspace_misses - 内存使用率:
used_memory / maxmemory
实施步骤
- 配置Redis监控:
redis-cli config set notify-keyspace-events Ex
- Python监控脚本:
import redis
import time
from prometheus_client import Gauge, Counter, Histogram
redis_client = redis.Redis(host='localhost', port=6379)
cache_hit_rate = Gauge('model_cache_hit_rate', 'Cache hit rate')
while True:
info = redis_client.info()
hits = info.get('keyspace_hits', 0)
misses = info.get('keyspace_misses', 0)
total = hits + misses
if total > 0:
hit_rate = hits / total
cache_hit_rate.set(hit_rate)
time.sleep(60)
- 告警配置:
- 命中率低于70%时触发警告
- 连续5分钟命中率低于80%时触发严重告警
- 内存使用率超过85%时触发警告
Prometheus告警规则
- alert: CacheHitRateLow
expr: model_cache_hit_rate < 0.7
for: 5m
labels:
severity: warning
annotations:
summary: "Cache hit rate is below threshold"
监控面板展示
在Grafana中创建包含以下指标的仪表板:
- 缓存命中率趋势图
- 内存使用率监控
- 命中/未命中次数对比

讨论