基于Docker Swarm的模型监控系统配置
最近在部署基于Docker Swarm的机器学习模型监控平台时踩了不少坑,分享一下实际配置过程。
核心监控指标配置
首先需要在Docker Swarm服务中集成Prometheus监控。创建docker-compose.yml文件:
version: '3.8'
services:
prometheus:
image: prom/prometheus:v2.37.0
volumes:
- ./prometheus.yml:/etc/prometheus/prometheus.yml
ports:
- "9090:9090"
deploy:
replicas: 1
restart_policy:
condition: on-failure
model-api:
image: my-model-api:v1.0
deploy:
resources:
limits:
memory: 2G
reservations:
memory: 512M
# 添加健康检查
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
Prometheus配置文件prometheus.yml
scrape_configs:
- job_name: 'docker-swarm'
static_configs:
- targets: ['localhost:9090']
metrics_path: /metrics
# 监控模型推理延迟
metric_relabel_configs:
- source_labels: [__name__]
regex: 'model_inference_duration_seconds'
target_label: model_type
replacement: 'production'
告警配置方案
在Alertmanager中配置告警规则:
route:
group_by: ['alertname']
group_wait: 30s
group_interval: 5m
repeat_interval: 1h
receiver: 'slack'
receivers:
- name: 'slack'
slack_configs:
- send_resolved: true
text: "{{ .CommonAnnotations.description }}"
rules:
- alert: ModelLatencyHigh
expr: rate(model_inference_duration_seconds_sum[5m]) / rate(model_inference_duration_seconds_count[5m]) > 1.0
for: 2m
labels:
severity: critical
annotations:
summary: "模型推理延迟过高"
description: "模型平均延迟超过1秒,当前值:{{ $value }}秒"
实际踩坑记录
- 内存泄漏监控:最初只配置了CPU使用率,结果发现内存泄漏时CPU正常但服务崩溃。通过添加
container_memory_usage_bytes指标解决。 - 告警风暴处理:最初没有设置
for条件,导致微小波动就触发告警。现在设置至少持续2分钟才触发。 - Docker事件监听:使用
docker events --filter 'event=die'监听容器异常退出,配合Slack告警。
建议在生产环境中至少配置:延迟监控、内存使用率、CPU使用率、服务健康状态等核心指标。

讨论