容器化部署监控配置优化
在Kubernetes环境中部署ML模型服务时,需要重点关注以下关键监控指标:
核心监控指标配置
CPU使用率:设置阈值为80%,当连续5分钟超过阈值时触发告警
# Prometheus监控规则配置
rules:
- alert: HighCPUUsage
expr: rate(container_cpu_usage_seconds_total[5m]) > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "CPU使用率过高"
内存使用率:设置阈值为75%,超过时触发告警
- alert: HighMemoryUsage
expr: container_memory_usage_bytes / container_spec_memory_limit_bytes > 0.75
for: 3m
labels:
severity: critical
GPU使用率(如适用):设置阈值为85%,持续10分钟触发
- alert: HighGPUUsage
expr: nvidia_gpu_utilization > 85
for: 10m
labels:
severity: warning
告警配置方案
服务健康检查:每30秒检查一次模型端点响应时间
# Alertmanager配置
receivers:
- name: "slack-alerts"
slack_configs:
- api_url: "https://hooks.slack.com/services/YOUR/SLACK/WEBHOOK"
channel: "#ml-monitoring"
send_resolved: true
route:
receiver: "slack-alerts"
group_by: ["alertname"]
group_wait: 30s
group_interval: 5m
repeat_interval: 3h
模型性能监控:监控预测响应时间超过200ms的请求比例
- alert: HighPredictionLatency
expr: rate(http_request_duration_seconds_count[1m]) > 0.05
for: 2m
labels:
severity: warning
部署优化建议:
- 在Deployment配置中添加资源限制
- 配置HPA自动扩缩容
- 设置Pod健康检查探针
- 启用日志收集和聚合

讨论