Kubernetes集群资源使用预警
在ML模型生产环境中,集群资源监控是保障模型服务稳定性的核心环节。本文提供一套完整的Kubernetes资源预警方案。
核心监控指标配置
首先配置Prometheus监控规则,针对CPU和内存使用率设置以下阈值:
# prometheus/rules/ml-monitoring.yml
- alert: HighCPUUsage
expr: rate(container_cpu_usage_seconds_total{container!="POD",container!=""}[5m]) > 0.8
for: 5m
labels:
severity: warning
annotations:
summary: "CPU使用率超过80%"
- alert: HighMemoryUsage
expr: container_memory_usage_bytes{container!="POD",container!=""} > 2000000000
for: 10m
labels:
severity: critical
annotations:
summary: "内存使用超过2GB"
告警配置方案
配置Alertmanager接收器:
# alertmanager/config.yml
receivers:
- name: "slack-notifications"
slack_configs:
- api_url: "https://hooks.slack.com/services/YOUR/WEBHOOK"
channel: "#ml-alerts"
text: "{{ .CommonAnnotations.summary }}"
route:
receiver: "slack-notifications"
group_by: ["alertname"]
group_wait: 30s
group_interval: 5m
repeat_interval: 3h
实施步骤
- 部署Prometheus和Alertmanager
- 应用上述规则文件
- 验证告警触发:
kubectl run test-pod --image=nginx - 查看监控面板确认指标采集
通过以上配置,当集群资源使用率超过设定阈值时,将自动触发告警通知,确保及时响应资源瓶颈问题。

讨论