服务性能指标收集策略
核心监控指标配置
1. 模型推理延迟监控
# prometheus配置文件
scrape_configs:
- job_name: 'model-inference'
metrics_path: '/metrics'
static_configs:
- targets: ['localhost:8080']
metric_relabel_configs:
- source_labels: [__name__]
regex: 'model_latency_seconds'
target_label: metric_type
replacement: latency
2. 资源使用率监控
# 监控脚本
import psutil
import time
from prometheus_client import Gauge, start_http_server
# 创建指标
memory_usage = Gauge('model_memory_percent', 'Memory usage percentage')
cpu_usage = Gauge('model_cpu_percent', 'CPU usage percentage')
# 指标收集循环
while True:
memory_usage.set(psutil.virtual_memory().percent)
cpu_usage.set(psutil.cpu_percent())
time.sleep(30)
告警配置方案
3. 关键告警阈值设置
- 延迟超过500ms触发警告
- CPU使用率超过85%触发告警
- 内存使用率超过90%触发紧急告警
# alertmanager配置
route:
receiver: 'slack-notifications'
routes:
- match:
severity: critical
receiver: 'pagerduty'
receivers:
- name: 'slack-notifications'
slack_configs:
- send_resolved: true
4. 实施步骤
- 部署Prometheus服务器
- 配置指标采集器
- 设置告警规则
- 集成通知渠道

讨论