模型训练资源调度算法:从理论到实践
在机器学习模型训练过程中,资源调度算法直接影响训练效率和成本控制。本文将深入探讨基于监控指标的动态资源调度方案。
核心监控指标配置
# 关键指标采集配置
metrics:
- name: cpu_utilization
threshold: 80%
alert_level: warning
- name: memory_usage
threshold: 75%
alert_level: critical
- name: gpu_utilization
threshold: 90%
alert_level: warning
- name: disk_io_wait
threshold: 30ms
alert_level: warning
- name: network_latency
threshold: 100ms
alert_level: critical
告警触发机制实现
import psutil
import time
from datetime import datetime
class ResourceMonitor:
def __init__(self):
self.alert_thresholds = {
'cpu': 80,
'memory': 75,
'gpu': 90
}
def check_resources(self):
cpu_percent = psutil.cpu_percent(interval=1)
memory_percent = psutil.virtual_memory().percent
if cpu_percent > self.alert_thresholds['cpu']:
self.trigger_alert('CPU_USAGE', cpu_percent)
if memory_percent > self.alert_thresholds['memory']:
self.trigger_alert('MEMORY_USAGE', memory_percent)
调度策略优化
基于实时监控数据,实现自适应调度:当检测到资源瓶颈时自动调整训练资源配置。通过Prometheus + Grafana构建监控面板,实现分钟级资源使用可视化。建议配置阈值为CPU 80%、内存75%、GPU 90%,避免系统过载同时保证训练效率。

讨论