监控系统数据聚合分析
在机器学习模型运行时监控中,数据聚合分析是核心环节。以TensorFlow Serving为例,我们需重点关注以下指标:
核心监控指标配置
请求成功率:{"metric": "tensorflow_serving_request_count", "aggregation": "rate(1m)"} 平均延迟:{"metric": "tensorflow_serving_request_duration_ms", "aggregation": "avg()"} 错误率:{"metric": "tensorflow_serving_request_count", "filter": "error", "aggregation": "rate(1m)"}
告警配置方案
# 告警规则配置
rules:
- name: high_error_rate
metric: tensorflow_serving_request_count
condition: >
rate(5m) > 0.05
severity: warning
duration: 5m
- name: latency_spike
metric: tensorflow_serving_request_duration_ms
condition: >
avg() > 2000
severity: critical
duration: 3m
实际操作步骤
-
配置Prometheus抓取目标:
curl -X POST http://prometheus:9090/api/v1/alerts -
创建Grafana仪表板:
{ "dashboard": { "title": "Model Performance", "panels": [ {"targets": [{"expr": "rate(tensorflow_serving_request_count[5m])"}]} ] } }
通过以上配置,可实现对模型性能的实时监控与异常告警。

讨论