基于Transformer的图像文本多模态对齐训练策略
数据预处理流程
首先对图像和文本进行标准化处理:
import torch
from torchvision import transforms
from transformers import AutoTokenizer
# 图像预处理
image_transform = transforms.Compose([
transforms.Resize((224, 244)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 文本预处理
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
def preprocess_text(text):
return tokenizer(text, padding='max_length', truncation=True, max_length=128)
模型融合架构
采用双塔结构,分别处理图像和文本特征:
import torch.nn as nn
from transformers import BertModel
class MultiModalModel(nn.Module):
def __init__(self, text_model_name='bert-base-uncased'):
super().__init__()
self.image_encoder = nn.Sequential(
nn.Conv2d(3, 64, 3, padding=1),
nn.ReLU(),
nn.AdaptiveAvgPool2d((7, 7))
)
self.text_encoder = BertModel.from_pretrained(text_model_name)
self.fusion_layer = nn.Linear(768 * 2, 512) # 融合层
def forward(self, image, text_input_ids, text_attention_mask):
# 图像特征提取
img_features = self.image_encoder(image).view(image.size(0), -1)
# 文本特征提取
text_outputs = self.text_encoder(
input_ids=text_input_ids,
attention_mask=text_attention_mask
)
text_features = text_outputs.last_hidden_state[:, 0, :] # [CLS] token
# 特征对齐
combined = torch.cat([img_features, text_features], dim=1)
return self.fusion_layer(combined)
训练策略
使用对比损失函数进行对齐训练:
# 对比损失计算
loss_fn = nn.CrossEntropyLoss()
# 生成正负样本对,计算相似度矩阵
# 最终训练步骤可复现为:
# model.train()
# for batch in dataloader:
# optimizer.zero_grad()
# output = model(batch['image'], batch['text_ids'], batch['text_mask'])
# loss = compute_contrastive_loss(output)
# loss.backward()
# optimizer.step()
该方案通过特征对齐和对比学习实现多模态一致性,训练过程稳定且可复现。

讨论