多模态模型中的特征金字塔结构设计踩坑记录
最近在设计多模态大模型时,尝试构建特征金字塔结构来融合图像和文本特征,结果踩了不少坑。
问题背景
最初想通过传统CNN+Transformer的组合来实现,但发现图像和文本特征维度差异巨大,直接拼接效果很差。
解决方案
最终采用分层特征提取+跨模态融合的方法:
# 特征金字塔构建代码
import torch
import torch.nn as nn
class MultiModalFeaturePyramid(nn.Module):
def __init__(self):
super().__init__()
# 图像分支 - ResNet特征提取
self.image_backbone = resnet50(pretrained=True)
self.image_pyramid = nn.ModuleList([
nn.Conv2d(256, 128, 1),
nn.Conv2d(512, 128, 1),
nn.Conv2d(1024, 128, 1)
])
# 文本分支 - Transformer编码
self.text_encoder = BertModel.from_pretrained('bert-base-uncased')
self.text_pyramid = nn.ModuleList([
nn.Linear(768, 128),
nn.Linear(768, 128),
nn.Linear(768, 128)
])
def forward(self, image, text):
# 提取图像特征
image_features = self.image_backbone(image)
image_pyramid = [conv(feat) for conv, feat in zip(self.image_pyramid, image_features)]
# 提取文本特征
text_outputs = self.text_encoder(text)
text_features = text_outputs.last_hidden_state
text_pyramid = [conv(text_features.mean(dim=1)) for conv in self.text_pyramid]
# 跨模态融合
fused_features = []
for i in range(len(image_pyramid)):
# 注意力机制融合
img_feat = image_pyramid[i]
txt_feat = text_pyramid[i]
attention_weights = torch.softmax(torch.matmul(img_feat, txt_feat.t()), dim=-1)
fused = (img_feat * attention_weights) + (txt_feat * attention_weights)
fused_features.append(fused)
return fused_features
实践总结
关键在于特征对齐和跨模态注意力机制,避免了简单拼接的缺陷。
复现步骤
- 安装依赖:torch, transformers, torchvision
- 按照代码构建模型结构
- 使用图像+文本数据集训练
- 调整金字塔层数和融合策略

讨论