图像文本对齐训练的数据质量评估
在多模态大模型训练中,图像-文本对齐质量直接影响模型性能。本文将提供一套可复现的数据质量评估方案。
1. 核心评估指标
语义一致性得分(Semantic Consistency Score):
import torch
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def calculate_consistency_score(image_paths, text_prompts):
scores = []
for img_path, prompt in zip(image_paths, text_prompts):
inputs = processor(images=img_path, text=prompt, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
similarity = outputs.logits_per_image
scores.append(similarity.item())
return scores
2. 可复现评估流程
步骤1:数据预处理
# 读取图像和文本对
import pandas as pd
from PIL import Image
df = pd.read_csv("multimodal_dataset.csv")
image_paths = df["image_path"].tolist()
text_prompts = df["caption"].tolist()
步骤2:批量评估
# 批量计算一致性得分
batch_size = 32
consistency_scores = []
for i in range(0, len(image_paths), batch_size):
batch_images = image_paths[i:i+batch_size]
batch_texts = text_prompts[i:i+batch_size]
scores = calculate_consistency_score(batch_images, batch_texts)
consistency_scores.extend(scores)
3. 质量分箱分析
将评估结果按质量分箱,识别低质量样本:
# 构建质量分箱
quality_bins = pd.cut(consistency_scores, bins=5, labels=["Poor", "Fair", "Good", "Very Good", "Excellent"])
df["quality"] = quality_bins
# 统计各质量等级样本数
quality_distribution = df["quality"].value_counts()
该方案可帮助架构师在模型训练前识别并剔除低质量对齐样本,提升整体训练效果。

讨论