视觉语言模型中的数据融合策略
在视觉语言模型中,数据融合是实现跨模态理解的核心环节。本文将详细介绍一个可复现的数据融合方案,包含图像-文本对的预处理、特征提取和联合训练流程。
数据预处理流程
import torch
from transformers import AutoTokenizer, CLIPProcessor
from PIL import Image
import torchvision.transforms as transforms
# 图像预处理
image_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# 文本预处理
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
def preprocess_text(text):
return tokenizer(text, padding='max_length', truncation=True, max_length=128)
特征提取与融合
from transformers import CLIPModel
import torch.nn as nn
class VisionLanguageFusion(nn.Module):
def __init__(self):
super().__init__()
self.clip_model = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
self.text_encoder = self.clip_model.text_model
self.vision_encoder = self.clip_model.vision_model
def forward(self, image, text_input_ids):
# 图像特征提取
vision_outputs = self.vision_encoder(image)
image_features = vision_outputs.pooler_output # [batch_size, 768]
# 文本特征提取
text_outputs = self.text_encoder(text_input_ids)
text_features = text_outputs.pooler_output # [batch_size, 768]
# 特征融合 - 简单拼接+MLP
combined_features = torch.cat([image_features, text_features], dim=1) # [batch_size, 1536]
fusion_layer = nn.Linear(1536, 512)(combined_features)
return fusion_layer
联合训练策略
通过对比学习损失函数实现跨模态对齐:
# 对比损失计算
def contrastive_loss(image_features, text_features, temperature=0.07):
# 归一化特征
image_features = nn.functional.normalize(image_features, dim=1)
text_features = nn.functional.normalize(text_features, dim=1)
# 计算相似度矩阵
similarity_matrix = torch.mm(image_features, text_features.T) * temperature
# 对比损失
labels = torch.arange(similarity_matrix.size(0)).to(similarity_matrix.device)
loss = nn.CrossEntropyLoss()(similarity_matrix, labels)
return loss
该方案通过标准化处理、特征提取和对比学习实现了有效的视觉-语言数据融合,可作为多模态大模型的基础架构参考。

讨论