微服务环境下大模型部署流程
在大模型微服务化改造中,合理的部署流程是确保系统稳定性和可维护性的关键。本文将分享一个完整的部署流程实践。
部署前准备
首先,在部署前需要确保环境配置正确:
# 检查Docker环境
sudo docker --version
# 检查Kubernetes集群状态
kubectl cluster-info
部署步骤
- 构建镜像
FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
EXPOSE 8000
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "8000"]
- 推送镜像到仓库
# 构建并推送
sudo docker build -t registry.example.com/model-service:v1.0 .
sudo docker push registry.example.com/model-service:v1.0
- 部署到K8s
apiVersion: apps/v1
kind: Deployment
metadata:
name: model-deployment
spec:
replicas: 3
selector:
matchLabels:
app: model-service
template:
metadata:
labels:
app: model-service
spec:
containers:
- name: model-container
image: registry.example.com/model-service:v1.0
ports:
- containerPort: 8000
resources:
requests:
memory: "512Mi"
cpu: "250m"
limits:
memory: "1Gi"
cpu: "500m"
监控配置
部署后需要配置监控指标:
apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: model-monitor
spec:
selector:
matchLabels:
app: model-service
endpoints:
- port: http
path: /metrics
通过以上流程,可以实现大模型服务的标准化部署和监控。

讨论