TensorFlow Serving架构对比评测报告
架构方案对比
方案一:单节点TensorFlow Serving + Nginx反向代理 使用Docker容器化部署,通过Nginx实现负载均衡。
FROM tensorflow/serving:latest
COPY model /models/model
ENV MODEL_NAME=model
EXPOSE 8501
CMD ["tensorflow_model_server", "--model_base_path=/models/model"]
方案二:Kubernetes集群部署 使用Deployment + Service实现自动扩缩容和负载均衡。
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 3
selector:
matchLabels:
app: tensorflow-serving
template:
spec:
containers:
- image: tensorflow/serving:latest
ports:
- containerPort: 8501
env:
- name: MODEL_NAME
value: "model"
负载均衡配置方案
Nginx配置示例:
upstream tensorflow_servers {
server 172.18.0.2:8501;
server 172.18.0.3:8501;
server 172.18.0.4:8501;
}
Kubernetes Service配置:
apiVersion: v1
kind: Service
metadata:
name: tensorflow-serving-svc
spec:
selector:
app: tensorflow-serving
ports:
- port: 80
targetPort: 8501
实施建议
对于生产环境推荐Kubernetes方案,具备更好的弹性扩展能力。单节点方案适合测试环境快速部署。

讨论