Kubernetes节点污点与TensorFlow调度
在TensorFlow Serving微服务架构中,合理利用Kubernetes节点污点(Taints)和容忍度(Tolerations)能够实现模型服务的精准调度,提升资源利用率。
污点配置实践
首先为GPU节点添加污点:
kubectl taint nodes gpu-node1 gpu-type=tesla:NoSchedule
然后在TensorFlow Serving部署文件中添加容忍:
apiVersion: apps/v1
kind: Deployment
metadata:
name: tensorflow-serving
spec:
replicas: 3
selector:
matchLabels:
app: tensorflow-serving
template:
spec:
tolerations:
- key: "gpu-type"
operator: "Equal"
value: "tesla"
effect: "NoSchedule"
containers:
- name: serving
image: tensorflow/serving:latest-gpu
ports:
- containerPort: 8501
负载均衡配置
通过Service实现负载均衡:
apiVersion: v1
kind: Service
metadata:
name: tensorflow-service
spec:
selector:
app: tensorflow-serving
ports:
- port: 8501
targetPort: 8501
type: LoadBalancer
调度优化
为避免模型服务抢占,可设置优先级:
kubectl create priorityclass high-priority --value=1000
在部署配置中引用:
spec:
template:
spec:
priorityClassName: high-priority
通过以上配置,能够实现GPU资源的专属调度,确保TensorFlow服务稳定运行。

讨论