在TensorFlow Serving微服务架构中,模型服务监控告警是保障系统稳定运行的关键环节。本文将介绍如何构建完整的监控告警体系。
监控指标收集
首先需要配置Prometheus采集器,通过以下Docker-compose配置实现:
version: '3'
services:
tensorflow-serving:
image: tensorflow/serving:latest
ports:
- "8501:8501"
- "8500:8500"
volumes:
- ./models:/models
environment:
MODEL_NAME: my_model
MODEL_BASE_PATH: /models
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8500/v1/models/my_model"]
interval: 30s
timeout: 10s
retries: 3
告警规则配置
在Prometheus中添加告警规则:
groups:
- name: tensorflow.rules
rules:
- alert: ModelUnhealthy
expr: tensorflow_serving_model_load_count{job="tensorflow-serving"} < 1
for: 2m
labels:
severity: critical
annotations:
summary: "模型服务不可用"
description: "模型加载失败超过2分钟"
负载均衡配置
使用Nginx实现负载均衡:
upstream tensorflow_servers {
server 172.17.0.2:8501;
server 172.17.0.3:8501;
server 172.17.0.4:8501;
}
server {
listen 80;
location / {
proxy_pass http://tensorflow_servers;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
}
}
告警通知集成
通过Webhook将告警推送到Slack:
import requests
import json
def send_alert(message):
webhook_url = "https://hooks.slack.com/services/YOUR/WEBHOOK/URL"
payload = {
"text": message,
"channel": "#model-alerts"
}
requests.post(webhook_url, json=payload)
通过以上配置,可以实现从模型服务健康检查到告警通知的完整监控链路。

讨论