基于Kubernetes的TensorFlow模型服务部署优化
在TensorFlow Serving微服务架构实践中,我们通过Kubernetes实现了模型服务的容器化部署和弹性伸缩。本文将分享实际部署过程中的关键配置和优化方案。
Docker容器化部署
首先创建Dockerfile进行模型服务容器化:
FROM tensorflow/serving:latest
COPY model /models/model
ENV MODEL_NAME=model
EXPOSE 8501
ENTRYPOINT ["tensorflow_model_server"]
构建并推送镜像:
# 构建镜像
sudo docker build -t my-tf-serving:latest .
# 推送到镜像仓库
sudo docker tag my-tf-serving:latest registry.example.com/my-tf-serving:latest
Kubernetes部署配置
创建Deployment:
apiVersion: apps/v1
kind: Deployment
metadata:
name: tf-serving-deployment
spec:
replicas: 3
selector:
matchLabels:
app: tf-serving
template:
metadata:
labels:
app: tf-serving
spec:
containers:
- name: tensorflow-serving
image: registry.example.com/my-tf-serving:latest
ports:
- containerPort: 8501
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
配置Service进行负载均衡:
apiVersion: v1
kind: Service
metadata:
name: tf-serving-service
spec:
selector:
app: tf-serving
ports:
- port: 80
targetPort: 8501
type: LoadBalancer
负载均衡配置优化
通过Ingress控制器实现HTTP路由:
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: tf-serving-ingress
annotations:
nginx.ingress.kubernetes.io/rewrite-target: /
spec:
rules:
- host: api.example.com
http:
paths:
- path: /model/predict
pathType: Prefix
backend:
service:
name: tf-serving-service
port:
number: 80
通过上述配置,实现了TensorFlow模型服务的高可用部署和自动伸缩能力,显著提升了服务稳定性。

讨论