Transformer推理性能分析:多维度指标
在Transformer模型推理优化中,性能分析是提升效率的关键环节。本文从多个维度量化分析推理性能,并提供可复现的实现方法。
1. 推理延迟指标
使用PyTorch的torch.cuda.synchronize()进行精确计时:
import torch
import time
model = YourTransformerModel()
model.eval()
input_tensor = torch.randn(1, 512, 768).cuda()
# 预热
with torch.no_grad():
for _ in range(5):
output = model(input_tensor)
# 精确计时
latencies = []
for _ in range(100):
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
with torch.no_grad():
output = model(input_tensor)
end.record()
torch.cuda.synchronize()
latencies.append(start.elapsed_time(end))
print(f"平均延迟: {np.mean(latencies):.2f}ms")
2. 内存占用分析
通过torch.cuda.memory_stats()监控显存使用:
mem_before = torch.cuda.memory_allocated()
output = model(input_tensor)
mem_after = torch.cuda.memory_allocated()
print(f"内存占用: {(mem_after - mem_before) / (1024**2):.2f} MB")
3. 并发吞吐量测试
使用不同batch_size测试:
batch_sizes = [1, 4, 8, 16]
for bs in batch_sizes:
input_batch = torch.randn(bs, 512, 768).cuda()
# 测试吞吐量
start_time = time.time()
with torch.no_grad():
output = model(input_batch)
end_time = time.time()
throughput = bs / (end_time - start_time)
print(f"BS={bs}, 吞吐量: {throughput:.2f} samples/sec")
通过这些量化指标,可以全面评估Transformer推理性能,并为后续的模型剪枝、量化等优化提供数据支撑。

讨论