LLM测试体系搭建:微调模型质量评估与验证流程
在LLM微调工程化实践中,构建完善的测试体系是确保模型质量的关键环节。本文将围绕LoRA和Adapter微调方案,分享可复现的测试流程。
测试体系架构
1. 单元测试框架
import unittest
from peft import LoraConfig, get_peft_model
class TestLoRAConfig(unittest.TestCase):
def test_lora_config_initialization(self):
config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1
)
self.assertEqual(config.r, 8)
self.assertEqual(config.lora_alpha, 32)
2. 性能基准测试
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
def benchmark_inference(model, tokenizer, prompt, max_new_tokens=50):
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
微调模型验证流程
1. LoRA微调验证
# 加载基础模型和LoRA配置
model = AutoModelForCausalLM.from_pretrained("bert-base-uncased")
lora_config = LoraConfig(r=8, lora_alpha=32, target_modules=["query", "value"])
model = get_peft_model(model, lora_config)
# 验证LoRA权重初始化
lora_weights = model.base_model.model.encoder.layer[0].attention.self.query.lora_A
print(f"LoRA A矩阵形状: {lora_weights.shape}")
2. Adapter微调验证
from transformers import AdapterConfig, AdapterModel
# Adapter配置验证
adapter_config = AdapterConfig(
adapter_type="houlsby",
reduction_factor=16,
non_linearity="relu"
)
model.add_adapter("custom_adapter", config=adapter_config)
model.set_active_adapters("custom_adapter")
测试执行与结果分析
通过上述测试体系,可实现对微调模型的完整验证,包括模型结构正确性、性能基准和微调效果验证。

讨论