案例分享:某金融领域LoRA微调项目实施经验
在金融场景下,我们对Qwen-7B模型进行了LoRA微调以提升其在信贷风险评估任务上的表现。以下为具体实施步骤。
环境准备
pip install transformers accelerate peft datasets
数据准备与预处理
from datasets import load_dataset
import pandas as pd
dataset = load_dataset('json', data_files='financial_data.json')
# 假设数据包含'input_text'和'label'字段
train_dataset = dataset['train'].map(lambda x: {
'prompt': f"请判断以下贷款申请的风险等级:{x['input_text']}",
'response': x['label']
})
LoRA微调配置
from peft import LoraConfig, get_peft_model
from transformers import QwenForCausalLM, TrainingArguments, Trainer
model = QwenForCausalLM.from_pretrained("Qwen/Qwen-7B", trust_remote_code=True)
peft_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["c_attn", "c_proj"],
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
训练设置
training_args = TrainingArguments(
output_dir="./finetuned_lora",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
num_train_epochs=3,
learning_rate=2e-4,
logging_steps=10,
save_steps=100,
evaluation_strategy="no"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer
)
trainer.train()
模型评估
# 评估微调后的模型表现
model.eval()
with torch.no_grad():
outputs = model.generate(input_ids=input_ids, max_length=50)
print(tokenizer.decode(outputs[0]))
该方案在金融数据集上取得了显著提升,验证了LoRA微调在专业领域应用的有效性。

讨论