LoRA微调实战教程:从环境搭建到模型训练全过程
环境准备
首先创建虚拟环境并安装必要依赖:
conda create -n lora-finetune python=3.8
conda activate lora-finetune
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 -f https://download.pytorch.org/whl/torch_stable.html
pip install transformers accelerate peft datasets
数据准备
使用HuggingFace datasets加载数据集:
from datasets import load_dataset
dataset = load_dataset("json", data_files="train.json")
# 预处理函数
def preprocess(example):
return {"text": example["prompt"] + " " + example["completion"]}
dataset = dataset.map(preprocess, batched=False)
LoRA配置与训练
from peft import LoraConfig, get_peft_model
from transformers import AutoModelForCausalLM, TrainingArguments, Trainer
# 加载基础模型
model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf")
# LoRA配置
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.01,
bias="none",
task_type="CAUSAL_LM"
)
# 应用LoRA适配器
model = get_peft_model(model, lora_config)
# 训练参数
training_args = TrainingArguments(
output_dir="./lora-llama2",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=1e-4,
num_train_epochs=3,
logging_dir="./logs",
save_strategy="epoch"
)
# 开始训练
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset["train"],
tokenizer=tokenizer
)
trainer.train()
模型保存与推理
# 保存微调后的模型
model.save_pretrained("./fine-tuned-lora")
# 加载并推理
loaded_model = AutoModelForCausalLM.from_pretrained("./fine-tuned-lora")
该流程实现了完整的LoRA微调,适用于特定领域文本生成任务的定制化训练。

讨论