在LLM微调工程化实践中,性能基准测试是确保模型上线前效率评估的关键环节。本文将介绍一套可复现的效率评估方法。
基准测试流程
首先,准备测试环境:
pip install transformers accelerate datasets torch
1. 数据准备与预处理
from datasets import load_dataset
from transformers import AutoTokenizer
dataset = load_dataset("json", data_files="train.json")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
def tokenize_function(examples):
return tokenizer(examples["text"], truncation=True, padding="max_length", max_length=512)
tokenized_dataset = dataset.map(tokenize_function, batched=True)
2. LoRA微调配置
from peft import get_peft_model, LoraConfig
lora_config = LoraConfig(
r=8,
lora_alpha=32,
target_modules=["query", "value"],
lora_dropout=0.01,
bias="none",
task_type="CAUSAL_LM"
)
3. 性能测试脚本
import time
import torch
from accelerate import Accelerator
accelerator = Accelerator()
model = get_peft_model(model, lora_config)
def benchmark_inference(model, inputs):
start_time = time.time()
with torch.no_grad():
outputs = model(**inputs)
end_time = time.time()
return end_time - start_time
通过上述方法,可量化微调后的模型在推理速度、内存占用等关键指标,为上线决策提供数据支持。
复现步骤总结
- 准备测试数据集
- 配置LoRA参数
- 运行基准测试
- 记录并分析性能指标

讨论