在LLM微调工程化实践中,Adapter层激活函数的选择对训练效果具有显著影响。本文将通过具体实验展示不同激活函数对模型性能的影响。
实验环境配置
首先,我们使用HuggingFace Transformers库和PEFT库进行Adapter微调。需要安装以下依赖:
pip install transformers peft accelerate
Adapter层结构实现
from peft import get_peft_model, LoraConfig, TaskType
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("gpt2")
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
r=8,
lora_alpha=32,
target_modules=["q_proj", "v_proj"],
lora_dropout=0.1,
bias="none"
)
model = get_peft_model(model, peft_config)
激活函数对比实验
我们分别测试了以下激活函数:
1. GELU激活函数
from transformers import AutoTokenizer
import torch.nn as nn
class GELUAdapter(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear = nn.Linear(hidden_size, hidden_size)
self.activation = nn.GELU()
def forward(self, x):
return self.activation(self.linear(x))
2. ReLU激活函数
class ReLUAdapter(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear = nn.Linear(hidden_size, hidden_size)
self.activation = nn.ReLU()
def forward(self, x):
return self.activation(self.linear(x))
3. Swish激活函数
class SwishAdapter(nn.Module):
def __init__(self, hidden_size):
super().__init__()
self.linear = nn.Linear(hidden_size, hidden_size)
self.activation = nn.SiLU()
def forward(self, x):
return self.activation(self.linear(x))
训练设置
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./adapter_gelu",
per_device_train_batch_size=4,
gradient_accumulation_steps=8,
num_train_epochs=1,
logging_steps=10,
save_steps=500,
learning_rate=1e-4,
warmup_ratio=0.1,
logging_dir="./logs"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer
)
实验结果对比
通过在相同数据集上训练,我们得到以下结果:
- GELU激活函数:训练稳定,收敛速度适中,适合大多数场景
- ReLU激活函数:训练速度快但容易出现梯度消失问题
- Swish激活函数:性能最优但计算开销较大
建议在实际工程化部署时根据资源限制选择合适的激活函数。

讨论