基于自监督学习的多模态模型预训练策略
在多模态大模型架构设计中,预训练阶段的策略直接影响最终模型性能。本文提出一种基于自监督学习的多模态模型预训练方法,通过构建跨模态对比学习框架实现图像-文本联合训练。
数据处理流程
首先对原始数据进行标准化处理:
import torch
from torchvision import transforms
from PIL import Image
class MultiModalDataset(torch.utils.data.Dataset):
def __init__(self, image_paths, texts):
self.image_transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.image_paths = image_paths
self.texts = texts
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
image = Image.open(self.image_paths[idx]).convert('RGB')
image = self.image_transform(image)
text = self.texts[idx]
return image, text
模型融合方案
采用双塔结构,图像模态使用ResNet-50,文本模态使用BERT-base:
import torch.nn as nn
from transformers import BertModel
class MultiModalModel(nn.Module):
def __init__(self):
super().__init__()
self.image_encoder = models.resnet50(pretrained=True)
self.image_encoder.fc = nn.Linear(2048, 768)
self.text_encoder = BertModel.from_pretrained('bert-base-uncased')
self.text_pooler = nn.Linear(768, 768)
self.temperature = nn.Parameter(torch.ones([]) * 0.07)
def forward(self, image, text):
# 图像编码
image_features = self.image_encoder(image)
image_features = nn.functional.normalize(image_features, dim=1)
# 文本编码
text_outputs = self.text_encoder(text)
text_features = text_outputs.last_hidden_state[:, 0] # CLS token
text_features = self.text_pooler(text_features)
text_features = nn.functional.normalize(text_features, dim=1)
return image_features, text_features
自监督训练策略
通过对比学习损失函数:
# 计算相似度矩阵
logits = torch.matmul(image_features, text_features.T) * self.temperature.exp()
# 对比损失
loss = -torch.diag(torch.log_softmax(logits, dim=1)).mean()
loss += -torch.diag(torch.log_softmax(logits.T, dim=1)).mean()
该方案可有效学习模态间语义关联,在下游任务中表现优异,具有良好的可复现性。

讨论