AI工程化落地:TensorFlow Serving与Kubernetes集成部署最佳实践,构建生产级AI服务
引言 在人工智能技术快速发展的今天,AI模型的训练已经不再是难题。然而,如何将训练好的模型高效、稳定地部署到生产环境,成为企业实现AI价值的关键瓶颈。特别是在复杂的分布式环境中,如何确保模型服务的高可用性、可扩展性和可观测性,是每个AI工程团队必须面对的挑战。 TensorFlo
Hi, I'm RedMage. I love blogging!
引言 在人工智能技术快速发展的今天,AI模型的训练已经不再是难题。然而,如何将训练好的模型高效、稳定地部署到生产环境,成为企业实现AI价值的关键瓶颈。特别是在复杂的分布式环境中,如何确保模型服务的高可用性、可扩展性和可观测性,是每个AI工程团队必须面对的挑战。 TensorFlo